Schur-Pair Property and the Structure of Varietal Covering Groups
Authors
Abstract:
This article doesn't have abstract
similar resources
the underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولTHE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS
A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.
full texton the order of the schur multiplier of a pair of finite $p$-groups ii
let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with $|n|=p^n$ and $|g/n|=p^m$. a result of ellis (1998) shows that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $ p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$. recently, the authors have characterized...
full texton the order of the schur multiplier of a pair of finite p-groups ii
let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with $|n|=p^n$ and $|g/n|=p^m$. a result of ellis (1998) shows that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $ p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$. recently, the authors have characterized...
full textBesicovitch Covering Property for Homogeneous Distances on the Heisenberg Groups
We prove that the Besicovitch Covering Property (BCP) holds for homogeneous distances on the Heisenberg groups whose unit ball centered at the origin coincides with an Euclidean ball. We provide therefore the first examples of homogeneous distances that satisfy BCP in these groups. Indeed, commonly used homogeneous distances, such as (Cygan-)Korányi and Carnot-Carathéodory distances, are known ...
full textMy Resources
Journal title
volume 27 issue No. 2
pages 1- 16
publication date 2001-01-24
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023