Schur-Pair Property and the Structure of Varietal Covering Groups

Authors

  • A. R. Salemkar
  • M. R. R. Moghaddam
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the underlying structure of language proficiency and the proficiency level

هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...

15 صفحه اول

THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS

A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.  

full text

on the order of the schur multiplier of a pair of finite $p$-groups ii

‎let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with‎ ‎$|n|=p^n$ and $|g/n|=p^m$‎. ‎a result of ellis (1998) shows‎ ‎that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded‎ ‎by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $‎ ‎p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$‎. ‎recently‎, ‎the authors have characterized...

full text

on the order of the schur multiplier of a pair of finite p-groups ii

‎let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with‎ ‎$|n|=p^n$ and $|g/n|=p^m$‎. ‎a result of ellis (1998) shows‎ ‎that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded‎ ‎by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $‎ ‎p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$‎. ‎recently‎, ‎the authors have characterized...

full text

Besicovitch Covering Property for Homogeneous Distances on the Heisenberg Groups

We prove that the Besicovitch Covering Property (BCP) holds for homogeneous distances on the Heisenberg groups whose unit ball centered at the origin coincides with an Euclidean ball. We provide therefore the first examples of homogeneous distances that satisfy BCP in these groups. Indeed, commonly used homogeneous distances, such as (Cygan-)Korányi and Carnot-Carathéodory distances, are known ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 27  issue No. 2

pages  1- 16

publication date 2001-01-24

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023